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SUMMARY

Numerical study has been performed to investigate the e�ects of cavity shape on �ow and heat
transfer characteristics of the lid-driven cavity �ows. Dependence of �ow and thermal behaviour on the
aspect ratio of the cavities is also evaluated. Three types of the cross-sectional shape, namely, circular,
triangular, and rectangular, and four aspect ratios, 0:133; 0:207; 0:288, and 0.5, are taken into account
to construct twelve possible combinations; however, attention is focused on the small-aspect-ratio
situations. Value of the Reynolds number considered in this study is varied between 100 and 1800. For
the cases considered in this study a major clockwise vortex driven by the moving lid prevailing in the
cavity is always observed. When the Reynolds number is �xed, the rectangular cavity produces strongest
lid-driven �ow, and the triangular cavity weakest. For the cases at small aspect ratio and low Reynolds
number, the streamlines appear symmetric fore-and-aft with respect to the central line at x=L=0:5. Data
for the local and average Nusselt numbers are also provided. For rectangular cavities, it is observed that
case 1=5R produces the highest average Nusselt number at any Reynolds number. Among the twelve
possible geometric cases considered herein, the highest and lowest average Nusselt numbers are found
with cases 1=6T and 1=2C, respectively. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: forced convection; lid-driven; cavity �ow

INTRODUCTION

Lid-driven cavity �ows are of great interest in the past several decades, owing to their
relevance to a number of engineering devices such as slider bearings [1, 2], wet clutches [3, 4],
and gas lubrication systems [5, 6]. In the operation of a wet clutch, the contact between the
grooved friction plate and the metal separator plate produces friction and then generates heat.
The generated heat can only be removed by the �uid �ow in the grooves. In addition, an air
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gap lubrication unit is equipped with a series of horizontal cavities. A moving plate is placed
at the top of the cavities in which the �uid is enclosed. The lubrication performance of the
unit is then dependent on the cavity �ow behaviour and the pressure distribution in the cavity.
A number of reports, for example, Theodossiou and Sousa [7] and Ghia et al. [8], were

published to present numerical algorithms for solving the �uid �ow equations. In these
reports, the lid-driven cavity �ows are frequently regarded as a benchmark problem for testing
the relative performance of the numerical schemes. In addition, Freitas et al. [9] performed
experimental and numerical investigation of three-dimensional forced convection heat transfer
in a rectangular cavity �lled with liquid water. In this report, results for a cavity �ow at
a Reynolds number of 3200 have been presented and the Taylor–Gortler-like vortices were
observed. Recently, Migeon et al. [10] performed experimental investigation of laminar forced
convection inside the two-dimensional square, rectangular, and semi-circular water cavities at
a Reynolds number of 1000. Lately, the same group of authors extended their experimental
study to the three-dimensional square and rectangular water cavity �ows [11].
It appears that most previous studies regarding the �ow and thermal behaviour of the

lid-driven cavity �ows were focused mainly on the �ows in the rectangular cavities [7–11].
There were few reports that dealt with cavities with complex shapes. More recently, Chen
and Cheng [12, 13] investigated �ow and thermal characteristics in an arc-shape cavity, and
found very di�erent �ow features between the �ows in the rectangular and the arc-shape
cavities. According to the data obtained, it was observed that the cavity shape may have
profound in�uence on the �ow pattern and heat transfer characteristics of the cavity �ows.
Unfortunately, the e�ects of cavity geometry on the �ow and thermal behaviour have not
been su�ciently studied. In these circumstances, the major aim of the present study is to
numerically study the geometry e�ects of the cavity on the �ow and convective heat transfer
characteristics of the lid-driven cavity �ows. Dependence of the �ow pattern and thermal
characteristics on the shape and the aspect ratio of the cavities is of major concern.
Physical models of the lid-driven cavities are shown in Figure 1. In this study, three types

of the cross-sectional shape of the cavity, namely, circular, triangular, and rectangular, are
considered. For each type of shape, four aspect ratios (H=L), 0.133, 0.207, 0.288 and 0.5, are
taken into account so as to construct twelve possible geometric combinations. The complex-
shape bottom wall is stationary and is maintained at a uniform higher temperature TH. The
lid of the cavity is maintained at a lower temperature TL and moves at a steady velocity
u0. The cavities are of height H and width L. The twelve test cases are listed in Table I.
Each case is named based on the shape of the cavity and the aspect ratio. For example, case
1=4T is with the triangular cavity of H=L=0:288 and case 1=2R is with the rectangular cavity
of H=L=0:5. However, in this study attention is focused on the small-aspect-ratio situations,
cases 1=6C, 1=6T, and 1=6R. Value of the Reynolds number (Re) considered in this study is
varied between 100 and 1800, and the Prandtl number (Pr) is assigned to be 0.71 for air �ow.

THEORETICAL ANALYSIS

Governing equations and boundary conditions

The �uid �ow is assumed to be two-dimensional, steady, incompressible, and laminar. Fluid
properties are assumed to be constant, and the body forces are neglected. The continuity,
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Figure 1. Physical con�guration: (a) circular cavity; (b) triangular cavity; and (c) rectangular cavity.

momentum, and energy equations governing the velocity and temperature �elds in the cavity
are expressed on Cartesian coordinates as

ux + vy=0 (1)

uux + vuy=− 1
�
px + �(uxx + uyy) (2)

uvx + vvy=− 1
�
py + �(vxx + vyy) (3)

uTx + vTy= �(Txx + Tyy) (4)

The stream function-vorticity formulation is adopted in this study to express these above
equations. Meanwhile, the curvilinear coordinates (�; �) are required when one deals with
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Table I. Test cases.

Cases Circular Triangular Rectangular

H=L = 0:133
1/6C 1/6T 1/6R

H=L = 0:207

1/5C 1/5T 1/5R

H=L = 0:288

1/4C 1/4T 1/4R

H=L = 0:5

1/2C 1/2T 1/2R

the irregular solution domain. Based on the curvilinear coordinates, vorticity (!) and stream
function ( ) are expressed as

!= vx − uy=(�xv� + �xv�)− (�yu� + �yu�) (5a)

and

u=  y= �y � + �y � (5b)

v=− x=− (�x � + �x �) (5c)

respectively. The following dimensionless parameters are de�ned in prior to derive the
dimensionless forms of the governing equations as

X = x=L; Y =y=L; U = u=u0; V = v=u0; �=  =u0L

�=!L=u0; Re= u0L=�; Pr= �=� (6)

Introducing the stream function-vorticity formulation, curvilinear coordinates, and the dimension-
less parameters into the governing equations yields

a��� − 2b��� + c���=− J� (7)

���� −����=(a��� − 2b��� + c���)=JRe (8)

���� −����=(a��� − 2b��� + c���)=(JPrRe) (9)
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where

a=X 2
� + Y 2� (10a)

b=X�X� + Y�Y� (10b)

c=X 2
� + Y 2� (10c)

J =X�Y� − X�Y� (10d)

The non-slip boundary conditions for velocity components and the isothermal condition on
the moving lid are given in dimensionless form as

On the moving lid: U =1; V =0; �=0; �=−(X�U�)=J (11)

On the other hand, the boundary conditions on the complex-shape bottom wall are pres-
cribed by

On the bottom wall: U =0; V =0; �=0; �= −(Y�V� − X�U�)=J (12)

NUMERICAL METHODS

Equations (7)–(9) are then discretized into a set of simultaneous algebraic equations on the
curvilinear coordinates (�; �). The obtained discretization expressions for �, �, and � are
solved individually. Equation (7), the Poisson equation of stream function, is solved by the
successive over-relaxation (SOR) method, and Equations (8) and (9), the vorticity transport
equation and the energy equation, are solved by the �nite-volume method. Further information
regarding theses numerical methods is available in References [12–14].
The curvilinear coordinates, �= �(X; Y ) and �= �(X; Y ), are obtained by solving the

following two elliptic Poisson equations:

@2�
@X 2 +

@2�
@Y 2

=P(X; Y ) (13)

@2�
@X 2 +

@2�
@Y 2

=Q(X; Y ) (14)

where P and Q are two arbitrary functions speci�ed to adjust the local density of the grids.
Meanwhile, the orthogonality of the generated grids can be improved by carefully setting the
boundary conditions associated with Equations (13) and (14). A grid system of 101×101
grids for the computation domain is adopted typically in the analysis after a careful check for
the grid independence of the numerical solution is made, in order to ensure the accuracy and
validity of the numerical schemes.
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RESULTS AND DISCUSSION

Flow and thermal �elds

Numerical results of �ow �elds and temperature distributions for various cases are displayed
in the section with streamlines and isotherms, respectively. In each plot, data of maximum
and minimum values of the variables of interest are shown for a quantitative comparison.
E�ects of Reynolds number and aspect ratio on the �ow pattern and temperature distribution

for circular cavity �ows are shown in Figure 2. For the small-aspect-ratio cases (H=L=0:133),
a shear-driven clockwise vortex is observed. At H=L=0:133 and Re=100, the centre of the
vortex is located nearly at the centre of the cavity, and the streamlines and isotherms appear
symmetric fore-and-aft with respect to the central line at x=L=0:5. This symmetry feature is
part of the nature of the Stokes �ows at low Reynolds number, which have been visualized
by a number of authors, for example, Taneda [15]. However, an increase in the Reynolds
number causes the centre of the vortex to move toward the right corner of the cavity, and
the symmetry feature is no longer visible. When the aspect ratio is elevated, the strength
of the vortex is appreciably increased, and a second counter-clockwise vortex may appear
in the lower left area of the cavity. Meanwhile, based on the isotherms plotted in Figure 2,
it is clearly seen that the vortex motion produces a convection e�ect in the area near the
right corner, where the thermal strati�cation is obviously blurred. Extent and strength of the
convection region near the right corner increase with either Reynolds number or the aspect
ratio. Also, since a higher temperature gradient indicates a higher heat transfer rate, based on
the distribution of the isotherms adjacent to the walls, the higher heat transfer rates may be
located in the top-left and the bottom-right surface areas for the circular cavities.
Similar e�ects of Reynolds number and aspect ratio on the �ow patterns and tempera-

ture distributions in the triangular cavities are illustrated in Figure 3. Again, the streamlines
look symmetric with respect to the central line at x=L=0:5 for the case at H=L=0:133
and Re=100. However, the strength of the vortex is relatively weaker in the triangular
cavities than in the circular cavities at the same Reynolds numbers and aspect ratios. For the
triangular cavities, the higher heat transfer rates may also be observed in the top-left and the
bottom-right surface areas.
Figure 4 shows the e�ects of Reynolds number and aspect ratio on the �ow patterns and

temperature distributions in the rectangular cavities. For the case at lower aspect ratio and low
Reynolds number, it is expected to observe two nearly symmetric vortices in the rectangular
cavity since in this situation the �ow approaches the Stokes-�ow condition [15]. The plot
of H=L=0:133 and Re=100 agrees with this expectation, and for this case two nearly sym-
metric clockwise vortices are observed in the cavity. When the value of Reynolds number is
increased, the right vortex becomes stronger while the left one becomes weaker. At Re=500,
the left vortex completely disappears. For the rectangular cavities, it is found that higher heat
transfer rates are located in the areas near the left corner on the moving lid surface and near
the upper corner on the right wall. The higher heat transfer rate near the left corner on the
colder lid surface is caused by the impingement of the hot plume rising along the vertical
left wall. On the other hand, the down washing of the cold stream from the lid surface forms
a thermal boundary layer on the right wall so as to result in a higher heat transfer rate near
the upper corner on the right wall. Note that among the three types of cross-sectional shapes
considered, the rectangular cavity produces strongest lid-driven �ow and the triangular cavity
weakest at the same Reynolds number.
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Figure 2. E�ects of Reynolds number and aspect ratio on �ow pattern and temperature
distribution for circular cavity �ows.
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Figure 3. E�ects of Reynolds number and aspect ratio on �ow pattern and temperature
distribution for triangular cavity �ows.
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Figure 4. E�ects of Reynolds number and aspect ratio on �ow pattern and temperature
distribution for rectangular cavity �ows.
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Heat transfer performance

The obtained numerical solutions for temperature distributions are used to further evaluate
heat transfer performance of the cavity �ows. Meanwhile, the solutions of the velocity �eld
are used to determine the shear stress on the moving lid. Local Nusselt number on the moving
lid surface representing the local heat transfer performance is de�ned by

Nux=
hxL
k
=

L
TH − TL

@T
@y

∣∣∣∣
moving lid

(15)

where hx is the local heat transfer coe�cient.
Based on the results of the local Nusselt number, average Nusselt number on the moving

lid surface can be further evaluated by integration as

Nu=
�hL
k
=

∫ 1

0
Nux dX (16)

where the average heat transfer coe�cient �h is given by

�h=
1
L

∫ L

0
hx dX (17)

Note that the magnitude of the average Nusselt number represents the overall heat transfer
performance of the cavity �ow.
On the other hand, local friction factor on the moving lid is de�ned in terms of the local

shear stress as

fx=
�x
�u20

=
�
�u20

@u
@y

∣∣∣∣
moving lid

=
1
Re

X�

J
U�

∣∣∣∣
moving lid

(18)

Figure 5 shows the distributions of local Nusselt number on the moving lid for the circular,
triangular, and rectangular cavities. In this �gure, the value of Reynolds number is �xed at
500. The results presented in Figure 5(a) are for circular cavities with various aspect ratios.
It is found that the magnitude of local Nusselt number is reduced if the aspect ratio is
increased. This may be attributed to the increase in the heat transfer distance between the
hot bottom wall and the cold lid accompanying the increase in the aspect ratio. Therefore,
for case 1=6C, the magnitude of the local Nusselt number is always higher than other cases.
The local Nusselt number reaches extremely high values at points near the two corners.
Figure 5(b) shows the results of the local Nusselt number for the triangular cavity �ows.
Again, it is found that the case with smallest aspect ratio, case 1=6T, has the highest Nusselt
number. However, the heat transfer characteristics of the rectangular cavity �ows shown in
Figure 5(c) exhibit a di�erent feature. According to the data given in Figure 5(c), it is clearly
seen that the highest heat transfer is with case 1=5R, not 1=6R. It seems that the heat transfer
enhancement due to the increase in the vortex strength may compensate the heat transfer
reduction due to the increase in the heat transfer distance, when the aspect ratio is elevated.
Therefore, the Nusselt number is not monotonically increased with a decrease in the aspect
ratio from 0.5 to 0.133, and apparently the heat transfer reaches a maximum at the aspect
ratio of 0.207 with case 1=5R.
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Figure 5. Distribution of local Nusselt number on the moving lid at Re = 500: (a) circular cavities;
(b) triangular cavities; and (c) rectangular cavities.

In order to provide deeper insight into the e�ects of the Reynolds number and aspect ratio on
overall heat transfer performance for various types of cavity �ows, the data of average Nusselt
number (Nu) as a function of the Reynolds number associated with the �ows in circular,
triangular, and rectangular cavities are provided in Figure 6(a), (b), and (c), respectively.
It appears that the Reynolds number plays an important role in the heat transfer enhancement.
In general, the average Nusselt number increases with the Reynolds number. The increase in
Nu with Re becomes more obvious at a higher aspect ratio. For the cases with circular cavities
shown in Figure 6(a), the curve of case 1=2C exhibits the poorest heat transfer performance.
This re�ects the fact observed in Figure 5(a) that the magnitude of Nusselt number is reduced
if the aspect ratio is increased. Similarly, in Figure 6(b) for the �ows with triangular cavities, it
is found that case 1=2T exhibits the poorest heat transfer performance and case 1=6T the best.
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Figure 6. Average Nusselt number as a function of Reynolds number: (a) circular cavities;
(b) triangular cavities; and (c) rectangular cavities.

For the cases shown in Figures 6(a) and (b), the value of the Nusselt number monotonically
increased with a decrease in the aspect ratio; however, the rectangular cavity �ows shown in
Figure 6(c) exhibit a di�erent feature as already mentioned earlier. It is obvious that among
these cases shown in Figure 6(c), case 1=5R produces the highest average Nusselt number at
Re¿200. According to the data collected in this study, it is observed that among the twelve
test cases considered herein, the highest and lowest average Nusselt numbers are found with
cases 1=6T and 1=2C, respectively.
E�ects of Reynolds number on the distributions of the local friction factor in terms of fxRe

along the moving lid are shown in Figure 7. In this �gure, the results for cases 1=6C, 1=6T,
and 1=6R are provided in Figures 7(a), (b), and (c), respectively. In these cases, the aspect
ratio is �xed at 0.133. For cases 1=6C and 1=6T, the value of fxRe increases with Reynolds
number except for the area between x=L=0:6 and 0:8, and the e�ects of Reynolds number are
more signi�cant in the left portion of the lid surface than in the right. In addition, the curves
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Figure 7. E�ects of Reynolds number on the distributions of local friction factor on the moving lid at
H=L = 0:133: (a) Case 1/6C; (b) Case 1/6T; and (c) Case 1/6R.

given in Figure 7(c) show that for case 1=6R the value of fxRe increases with Reynolds
number only for the areas near the two corners and the value reaches local minimum there.
For the area between x=L=0:25 and 0:75, an increase in Reynolds number from 100 to 500
produces no appreciable change in the friction factor. In all the three plots shown in Figure 7,
the curves of Re=100 relatively exhibit more symmetric feature as compared with those of
higher Reynolds number.

CONCLUDING REMARKS

For the cases considered in this study a major clockwise vortex driven by the moving lid
prevails in the cavity. When the Reynolds number is �xed, the rectangular cavity produces
strongest lid-driven �ow, and the triangular cavity weakest. For the cases at small aspect ratio
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and low Reynolds number (say, 100), the streamlines appear symmetric fore-and-aft with
respect to the central line at x=L=0:5. This symmetry feature is the nature of the Stokes
�ows at low Reynolds number [15]. However, an increase in the Reynolds number causes
the centre of the vortex to move toward the right corner of the cavity, and the symmetry
feature is not visible. At a higher Reynolds number, the vortex motion produces a convection
region near the right corner of the cavity, where the thermal strati�cation is obviously blurred.
Based on the solutions obtained, for the circular and the triangular cavities, the higher heat
transfer rates may be located in the top-left and the bottom-right surface areas. However, for
the rectangular cavities, higher heat transfer rates are found in the areas near the left corner
on the lid surface and near the upper corner on the right wall.
In general, the magnitude of the Nusselt number is reduced if the aspect ratio is increased.

This may be attributed to the increase in the heat transfer distance between the hot bottom
wall and the cold lid when the aspect ratio is increased. However, for the rectangular cavities,
it is seen that the highest heat transfer is with case 1=5R, not 1=6R.
It is also found that the Reynolds number plays an important role in the heat transfer

enhancement. In general, the average Nusselt number increases with the Reynolds number.
The increase in Nu with Re becomes more obvious at a higher aspect ratio. It is observed
that among the twelve test cases considered herein, the highest and lowest average Nusselt
numbers are found with cases 1=6T and 1=2C, respectively.

NOMENCLATURE

a; b; c coordinate transformation coe�cients
f friction factor
H height of cavity
L width of cavity
p �uid pressure
Pr Prandtl number
Re Reynolds number
u; v velocity components in x- and y-directions
u0 velocity of moving lid
U;V dimensionless velocity components in x- and y-directions
x; y rectangular coordinates
X; Y dimensionless rectangular coordinates

Greek symbols

� thermal di�usivity of �uid
�; � curvilinear coordinates
� dimensionless temperature
� kinematic viscosity of �uid
� density of �uid
 stream function
� dimensionless stream function
! vorticity
� dimensionless vorticity

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:785–799



NUMERICAL STUDY OF FLOW AND THERMAL BEHAVIOUR 799

REFERENCES

1. Hu Y, Bogy DB. Dynamic stability and spacing modulation of sub-25 nm �y height sliders. Journal of Tribology
1997; 119:646–652.

2. Hu Y. Contact take-o� characteristics of proximity recording air bearing sliders in magnetic hard disk drivers.
Journal of Tribology 1999; 121:948–954.

3. Berger EJ, Sadeghi F, Krousgrill CM. Finite element modeling of engagement of rough and grooved wet
clutches. Journal of Tribology 1996; 118:137–146.

4. Berger EJ, Sadeghi F, Krousgrill CM. Analytical and numerical modeling of engagement of rough, permeable,
grooved wet clutches. Journal of Tribology 1997; 119:143–148.

5. Kubo M, Ohtsubo Y, Kawashima N, Marumo H. Finite element solution for the rare�ed gas lubrication problem.
Journal of Tribology 1988; 110:335–341.

6. Kotera H, Shima S. Shape optimization to perform prescribed air lubrication using genetic algorithm. Tribology
Transactions 2000; 43:837–841.

7. Theodossiou VM, Sousa ACM. An e�cient algorithm for solving the incompressible �uid �ow equations.
International Journal for Numerical Methods in Fluids 1986; 6:557–572.

8. Ghia U, Ghia KN, Shin CT. High-resolutions for incompressible �ow using the Navier–Stokes equations and a
multigrid method. Journal of Computation Physics 1982; 48:387–411.

9. Freitas CJ, Street RL, Findikakis AN, Kose� JR. Numerical simulation of three-dimensional �ow in a cavity.
International Journal for Numerical Methods in Fluids 1985; 5:561–575.

10. Migeon C, Texier A, Pineau G. E�ects of lid-driven cavity shape on the �ow establishment phase. Journal of
Fluids and Structures 2000; 14:469–488.

11. Migeon C, Pineau G, Texier A. Three-dimensionality development inside standard parallelepipeic lid-driven
cavity at Re=1000. Journal of Fluids and Structures 2003; 17:717–738.

12. Chen CL, Cheng CH. Buoyancy-induced �ow and convection heat transfer in an inclined arc-shape enclosure.
International Journal of Heat and Fluid Flow 2002; 23:823–830.

13. Chen CL, Cheng CH. Numerical prediction of buoyancy-induced periodic pattern and heat transfer in a lid-driven
arc-shape cavity. Numerical Heat Transfer 2003; 44(Part A):645–663.

14. Chen CL, Cheng CH. Experimental and numerical study of mixed convection and �ow pattern in a lid-driven
arc-shape cavity. Heat Mass Transfer 2004; 41:58–66.

15. Taneda S. Visualization of separating Stokes �ows. Journal of the Physical Society of Japan 1979;
46:1935–1942.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:785–799


